MATH 2204 - FORMULA SHEET

- <u>1st Order Linear ODE:</u> $\frac{dy}{dt} + p(t)y = g(t)$ Integrating Factor: $\mu(t) = e^{\int p(t)dt}$ Then $y(t) = \frac{1}{\mu(t)} \left[\int \mu(t)g(t)dt + C \right]$
- <u>1st Order homogeneous:</u> dy/dx = F(y/x) Then use substitution v = y/x and dy/dx = x dv/dx + v
 <u>(Existence and Uniqueness Theorem for 1st Order Linear ODE)</u>: If the function p and g are continuous on an open interval I = (a, b) containing the point $t = t_0$, then there **exists** a **unique** function $y = \phi(t)$ that satisfies the IVP

$$y' + p(t)y = g(t), \quad y(t_0) = y_0$$

for each t in I and where y_0 is an arbitrary initial value.

- Euler's Method: $\frac{dy}{dt} = f(t, y), y(t_0) = y_0.$ Given step size h,

 - $-t_{k+1} = t_k + h$
 - $y_{k+1} = y_k + f(t_k, y_k) h$