MATH 2204 - FORMULA SHEET

- 1st Order Linear ODE: $\frac{d y}{d t}+p(t) y=g(t)$
- Integrating Factor: $\mu(t)=e^{\int p(t) d t}$
- Then $y(t)=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+C\right]$
- 1st Order homogeneous: $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$
- Then use substitution $v=\frac{y}{x}$ and $\frac{d y}{d x}=x \frac{d v}{d x}+v$
- (Existence and Uniqueness Theorem for 1st Order Linear ODE): If the function p and g are continuous on an open interval $I=(a, b)$ containing the point $t=t_{0}$, then there exists a unique function $y=\phi(t)$ that satisties the IVP

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

for each t in I and where y_{0} is an arbitrary initial value.

- Euler's Method: $\frac{d y}{d t}=f(t, y), y\left(t_{0}\right)=y_{0}$.
- Given step size h,
$-t_{k+1}=t_{k}+h$
$-y_{k+1}=y_{k}+f\left(t_{k}, y_{k}\right) h$

